
7
/ *o—*ool ub7 PACIFICA TECHNO4..OGY DEL MAR CA FIG 20/N

SPECTRAL. DECOMPOSITION IN ADVECTIO N OIFFUSION ANALYSIS BY FINIT ETC (U)
AUG 78 R E NICKELL, 0 K GARTLING. S STRANG N000I ’e—77—C—05 75

UNCLASS IFIED pT—u J78—02 ’e O ‘IL I;I wue uu . 
_ _ _ _ _UflOlifl i. 
_ _ _i



1.0 ~ ~
II
~~

IIIII~2

I ~ 
~~~~~

HH~11111’ .25 
~~ ~~

MICROCOPY RESOLUTION TEST CH~~ T
NA ~NAL BIJREAIJ OF SrAN[)AR[)S ~~~h



-~ ~~~~~~~~~~

- ‘— —-~~ ______

7 __ — —  — — — 

p -

=;== : ~~~~~; ~~:______________________________

~~ — —— — — —  — — — — — —— —— _ . — —— ——  —.r0 WU_U I ~~I. fl IIUUU~~~~

~ ~~ 
P.O. Bo; 148 • Del Mar , California 92014 • T:I : (7i4 ) 453~2530

‘~~7~
T_h178_o24o 

,
.

R. E. /~ icke11, D. K. /Gartling
G. /~trang

SPECTRP& ~ECOMPOSIT1Ot4 iN ADVECT ION-DIFF%JSION ~NAI..YSIS 
‘

UJ BY FINITE ELEMENT METHODS

~~~ tr 3O~~ “1’~~~
’

~~~ 
_____

by D D C
R.E .fNickell

Pacifica Technology t~’~Del Mar , California 1~ NOV 24 1~P8 Ij~
__________________ 

‘ I  • 1

D . K. S art Ii ng ~ Lbd1It~tk,~Sandia Laboratories ~~~~~~~~~~~~~

Albu querque , New Mexico

S. Strang
Massachusetts Institute of Technology~

Cambridge , Massachusetts

Aug~~-~~~~-i978 ~~~~~~~~~~~~~~~~~~~~~
A~ ;::..~xd Lii p~.thlic r;1.o.a~

Diatxi buua~ UnI~mited

—

~ I

~~~~~~~~~~~~~
- - - — -~~~~~~~~~

- .---
~~~~~~~~~~~~~~~~~~~~



1. INTRODUCT ION

In a recent study [fl~ of the convergence properties of finite element

methods in nonlinear fluid me~hanics , an indirect approach was taken. A two—
dimensional example with a known exact solution was chosen as the vehicle for

the study, and various mesh refinements were tested in an attempt to extract
Information on the effect of the local Reynolds number. However, more direct
approaches are usually preferred. In this study one such direct approach is

followed, based upon the spectral decomposition of the solution operator.

Spectral decomposition is widely employed as a solution technique for
linear structural dynamics problems and can be applied readily to linear ,

transient heat transfer analysis; in this case, the extension to nonlinear
probl ems is of interest. It was shown in [2] that spectral techniques were
applicable to stiff** systems of rate equations , while recent studies [3,4]
of geometrically and materially nonlinear structural dynamics have demon-
strated the increased information content of the numerical results. The use
of spectral decomposition in nonlinear problems of heat and mass transfer

would be expected to yield equally increased flow of information to the

analyst , and this information could include a quantitative comparison of various

solution strategies, meshes , and element hierarchies .

In order to examine the use of spectral techniques in nonlinear heat

and mass transfer, a rel atively simple framework was chosen , based upon the
description of advection (convection) and diffusion (viscosity). Advection—

diffusion equations describe numerous transport phenomena of interest to

engineers and scientists. These descriptions typically have the form

+ u~~ -) = 
~ ‘ (1.1)

* Brackets denote references listed at the end of the paper.

** Stiff systems are those with a large spread in the eigenvalue spectrum of
the governing matrix operater.



where 4 is the system quantity being transported , p is the density , o the
diffusion parameter, t the time , and U

1 
the Cartesian components of advection

velocity in the x1 spatial coordinate directions.

For realistic situations (1.1), with an appropriate set of initial and
boundary conditions, describes a problem that is too complex for analytic
treatment. Therefore, (1.1) is usually solved approximatel y by some numerical
method, such as the methods of finite difference or finite element. When a
continuous partial differential equation , such as (1.1), is reduced to an
“equivalent” set of discrete equations, the discrete set is found to display
characteristics unlike those found in the original equation. Such charac-
teristics include both temporal and spatial oscillations , artificial dissi-
pation , and dispersion. Since this behavior arises strictly from the numerical
approximation , it must be understood and controlled in order for the approxi-
mate methods to achieve any validity and utility .

Finite difference approximations of the advection-d iffusion equation
have been investigated widely (see [5], e.g.) and continue to be an area of
research interest. Finite element approximations to (1.1) are of more recent
vintage [6], but are receiving a good deal of attention in the current litera-
ture (e.g., see [7,8]). However, littl e in the way of analysis of the numeri-
cal characteristics is available [9]. In the following sections the discretized
equations are examined through the techniques of spectral decomposition , as
applied to the one-dimensional prototype of (1.1). Although the example is
one-dimensional , all of the appropriate characteristics of more complex
examples are present for study.
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2. ONE-DIMENSIONAL TRANSPORT EQUATIONS

The analysis of the multi -dimensional equation given in (1.1) is too
complex, even In discrete form; thus , several one-dimensional cases will be
considered. One of the popular nonlinear forms of (1.1) which is often
analyzed is the Burger ’s equation

(2.1)

Equation (2.1) is a model for certain aspects of turbulence and shock wave
studies; it is also, in some sense, a one-dimensional analogue to the Navier-
Stokes equation (though there is no pressure gradient term or incompressi-
bility constraint).

A second equation that has received some study is the linear advection-
diffusion equation (color equation)

~~~~
- + u - = a ~~~~ , O < c t < co. (2.2)

Equation (2.2) is a model for the one-dimensional transport of some intensive
property of a system; e.g. , energy or species concentration.

Both of the above equations will be treated in the following sections
to illuminate both the similarities and differences (e.g., l inear vs. non-
l inear). Also , both steady and transient cases will be considered. In
studying (2.1) and (2.2), it must be emphasized that conclusions arrived
at do not necessarily carry over to the multi-dimensional case. However,

it is felt that the study of (2.1) and (2.2) will give some insight into
appropriate solution methods and modeling criteria for the higher

3
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dimensionality problems.

To complete the specification of the model problems , suitable initial
and boundary conditions for (2.1) and (2.2) are required. For both cases
the spatial domain must be finite (for computational convenience and accuracy)
and is chosen to be a unit length on the positive x axis; i.e., 0 < x < 1.
For the Burger ’s equation, the following boundary and initial conditions will
be treated:

(Steady State) u ~ , O < x < l, (2.3)

with u (1) = 0, u(O) = 2;

(Transient) + u ~U = a , 0 < x < 1 , (2.4)

with u(1,t) = 0, u(O,t) = 2,

and u(x,O) = 0;

For the advection-diffusjon equation , the following boundary and initial
conditions will be treated :

(Steady State) u ~~~~~
- = a , 0 < x < 1 , (2.5)

with 4(1) = 0 , 4(O) =2 ;

and u = u(x) specified .

4
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(Transient) + u = ct~~~ - , 0 < x < 1 , (2.6)

with 4(l ,t) = 0 , •(O,t) = 1

q (x,O) =0

and u = u(x) specified.

p
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3. THE EIGENSPECTRUM PROBLEM

The di scretization of the continuous Burger ’s equation leads to the
governing matrix equation (see Appendix A)

(3.1)

where M is the linear translational inertia matrix; K is the diffusion matrix;
C is the advective matrix; F is the vector of nodal point forces, due to
initial and boundary values; and u is the vector of nodal point velocities.
The matrix Il ls symmetric, positive-definite ; K is symmetric and at least
semi—definite ; and C is generally unsymmetric. Although (3.1) is written for
Burger ’s equation , it should be pointed out that the same matrix equation
characterizes transient, nonl inear Navier-Stokes flow. Al so, the development
that follows is equally valid for the more general case.

The generalized eigenvalue problem [10] is

(3.2)

where are the right-hand elgenvectors and the eigenval ues. The matrix
G is the sum of the diffusion (viscosity) and the instantaneous advection
(convection) matrices. Superposed asterisks indicate a complex scalar or

I, 
vector.

Similarly, for the transposed eigenvalue problem ,

* T  * T *xi ~ 
= 9 ~i (3.3)

6
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where are the left-hand eigenvectors .

The solu tion vec tor , u, can be expanded , in terms of either set of
eigenvectors, as

u( t) ~~~a(t)~7(t) (3.4)

or

u(t) =~~~~~(t)~~(t), (3.5)

where the complex modal coefficients are and $ ,  respectively. The explicit
time dependence of the eigenvalues and eigenvectors indicates the changing
eigenspectrum of the nonlinear system.

Othogonality implies that

* (O ,i~~~j~p* • M . 4  =
~~~~ * (3.6)

1 (m l ,

and

* 
0 ,i~~~j
* (3.7)— — gi ~ i=i
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If the conjugate of a complex scalar or vector is denoted by a superposed
bar, then the modal coefficients at any instant can be found from the current
velocity field as

r *
* ~T J m .
a~(t) = 

~
l’j !~ 

• ~(t) . (3.8)
- 

~~~~~

A similar expression could be obtained for 
r
(t) if the expansion (3.5) is

chosen.

Using the orthogonality relations (3.6) and (3.7), the uncoupled
(modal ) Burger ’s equations are

m~~~~+ g a ~~= f  (3.9)

where

= 
~~T F . (3.10)

3

For the case where the forcing function can be adequately described by a
linear representation over the time interval M = t0~1—t~, the exact solution
for each modal coefficient is given by the sum of three terms:

*

* * * *= c~0 + a~1 At + cL~2 e ~ 
, (3.11)

H 8
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where

* _* * _ * *_ *

* 
f. C .  f. c. m.c .

j0 ~~~~~~~ 
- 

*_ * *_ * ‘ •

c~c~ c~c~ c~c~

* _*

*
= 

~~~~~~~~~ 
(3.13)

c~ c~

and

* * *a
~
2 = a~(t~) ct

~O (3.14)

The quantities ct (tn), f~0~ and f 1 represent the initial condition for the

mode, the initial value of the modal forcing function , and the incremental

addition to the modal forcing function , respectively. The initial condition

is found from the solution at time tn through projection into modal space:

-*

* ~1 
m .

a.(tn) 
= i~~. 

• M • u( t~) • ; (3.15)
— m~ m~

the forcing function can be similia rly found:

* ~Tf~(-~) 
= F(T), t~ < < t,.~,.1 . (3.16)

9
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If F(i) can be reasonably approximated over the time interval by

F(t) = F  + (t_t n )AF (3.17)

then

*
f.0 = • 1 (3.18)

and

* ~1

~jl 
= • AF . (3.19)

For the case of a forcing function that is constant ,

* * _ * *
* * -X.•At f. c. / -A .At\

= cz~(t~) e + ~~~
;

3 
~1-e 

~~ ) . (3.20)

* 

It should be pointed out that the complex frequencies , X ;  eigenvectors ,
and and other modal quantities are theoretically changing continuously

with time, since the probl em is nonlinear. This devel opment is based upon
small departures from the nonlinear state during a particular time step, how-
ever; methods for extrapol ating the eigenspectrum coul d be studied , but such a
study is beyond the scope of this investigation .
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4. ANALYTIC SOLUTIONS FOR MODEL EQUATIONS

For purposes of comparison and determination of ~o1ution accuracy it
is convenient to have a closed form analytic solution to the test problems.
For the Burger’s equation a variety of analytic solutions are available for
both steady and transient probl ems , and for a wide variety of boundary and

initial conditions. These solutions have been cataloged by Benton and
Platzman [11]. For the cases considered here, the analytic solutions may be
expressed by:

(Steady State) u(x) = -A tanh 
(
~~)} (4.1)

where 8 = 1

1 _ A
— tanh(—) ,

(Transient) u(x ,t) = 
2t~~~

’
~~ 

; (42)

where F(x ,t) = ~~~ e
t
~~ • erfc [x_2t2 

~2/F

In the last expression for F(x,t), a change of scale and a shift of origin

are required to allow u(x,t) to describe the specified problem.
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5. NUMERICAL EXAMPLES

Analyses of Burger ’s equation were carried out for a wide range of the
diffusion parameter , a, while maintaining identical initial and boundary
conditions on the velocity field. Three cases were selected as representative:
a = 50, where diffusion dominates; a = 1 , where diffusion and advection are
balanced; and a = .01, where advection dominates. For each value of a, three
solutions were obtained. The first, obtained from the closed-form expression
(4.2), will be referred to as the “exact” solution. The second was obtained

from an implicit , Crank-Nicolson integration of the discretized equation (3.1),
and will be termed the “direct integration ” solution (the procedure is des-
cribed in Appendix B). The third was the result of carrying out the eigen—
spectrum analysis of the discretized matrix equation , fol lowed by “precise”
eigenmode integration , at each time step. This solution will be called the
“eigenspectrum” solution . The elgensystein was computed using an algorithm
developed by Moler and Stewart [12].

The major findings of this study are exhibited in Figures 1 ,2, and 3.
For each method (exact solution , direct integration , mode superposition), four
distinct solutions were obtained , with order of magnitude changes in the time
step. Ten steps were taken for each of the four solutions. To the extent that

the distiric4; solutions are continuous from one decade to the next, the time
step can be interpreted as being too small - namely, unless the early time
information has some intrinsic value , it should not be computed , since it is
not needed to advance the solution accurately. We have chosen to plot the mid—
side node of the first quadratic element - that node that is most near the
initial velocity discontinuity that propagates downstream. This midside node
sees the greatest variation in velocity at the earliest time and should pro-
vide the most sensitive measure of accuracy .

For a = 50 (Figure 1), diffusion is the dominant transport mechanism.
The probl em is solved for a time step of 10~~ from 0. to lO~~; again , for a
time step of 1O~~ from 0. to io

_2
; again , for a time step of io

_2 
from 0. to

1O~~; and , finally, for a time step of 10
_i 

from 0. to 1. The solution for
the last decade is plotted on a shifted scale. This can be deduced by

12
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observing that the exact solution is a1w~y~ continuous from decade to decade.
Note that, for the first two decades , both the direct integration and modal
superposition methods are virtually identical , and that both are subject to
substantial dispersion. This dispersion (or artificial momentum transport)
is due to the lack of sufficient spatial definition at early time. The direct

integration method displays a slight discontinuity between second and third
decades (note that the mode superposition remains continuous), wi th a large
discontinuity at the beginning of the final decade. The mode superposition
method has a modest discontinuity between the third and fourth decades.
Based upon these data , the mode superposition method can be used with a time
step about one order of magnitude larger than that for the Crank-Nicolson
method , while maintaining the same accuracy, when diffusion dominates.

For a = 1 (Figure 2), a distance equal to three times the shock thick-
ness (the shock thickness is equal to cx) was modeled wi th ten quadratic
elements. The same sequence of time steps and decades as that used for the
cx 50 studies was repeated for this case of balanced diffusion and advection .
Again , artificial dispersion dominates the first two decades. The mode
superposition method is slightly less accurate for the first two decades;
however , between the second and third decades, the direct integration solution
suffers a discontinuity , wh i le the mode su perpos iti on become s ex tremel y
accurate. The fourth decade is plotted on a shifted scale , again , and both
methods become less accurate; mode superposition is the most rapidly converg-
ing of the two methods during this period . As before, mode su perpos iti on
can be used with a time step about one order of magnitude greater than that
for direct integration , even here where diffusion and advection are both of
similar importance.

Finally, for a = .01 (Figure 3), a distance equal to five shock thick-
nesses is modeled with ten quadratic elements. The problem is solved for
time steps of l0 6, l0~~, 10

k, and 1O 3, with each decade taking ten time
steps. For such a small value of a the advection terms dominate the trans-

port of momentum. As before, and seemingly for all values of a, artificial

dispersion causes both numerical solutions to fall well below the exact

16 
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solution during the first two decades, with the direction integration solution
slightly less dispersive. Both numerical solutions approach the exact solution
In the third decade - the mode superposition results become asymptotic and
essentially exact, while the Crank-Nicol son results drift above the exact
solution. This latter trend is considerably exaggerated in the fourth decade ,
where the superior convergence properties of mode superposition are easily
observed. Again , about an order of magnitude Increase in the time step can
be tolerated with the mode superposition method over that required for the
Crank-Nicol son approach.

Spatial convergency can be studied in several ways. Two methods are
described here. First, the analyst can experiment with a variety of dis-
cretizations, while noting the point convergence of the velocity field. For
a = .01, the steady-state numerical solution (mode superposition and direct
integration gave identical results) is compared to the exact solution , as a
function of the number of elements in the mesh (Table 1). The elements are all
quadratic. As can be seen, even the points within the shock thickness are
adequately treated by the five-element model . Another , and more informative ,
approach is to examine the eigenval ue spectrum as a function of mesh size.
For a = 50, eigenvalue convergence is demonstrated for a variety of element
sizes (Table 2). These eigenvalues were calculated at an early time in the
solution but , unlike many structural problems , the spectrum is altered only
sli ghtly by system non-linearity. For this reason , iterative methods for
computing and recomputing the eigenvalue spectrum should be extremely economical .
This same statement may not be valid for two-dimensional flows with more complex
structure (e.g., recirculation regions , separation and reattachment, etc.).

The eigenvalues and eigenvectors are easily estimated (see Appendix C,
Equation (C.6)). Table 3 shows the comparison between the estimated values of
the characteristic times and the computed values for a ten-element model for
each of the three a regimes. Only the first twelve modes (of the nineteen
non-rigid-body modes in the model ) are estimated . In all cases , the esti-
mated values are almost identical with the computed values for the first ten
modes ; however, the caluclated mode shapes begin to deteriorate rapidly after

17 
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TABLE 2. Eigenvalue convergence (c&=50).
Number of elemen ts, N.

Elgenvalue , A N=2 11=5 N=10 N=20

1 .2218 .2176 .2174 .2174
2 .8200 .8134 .8099 .8096
3 2.5648 1.8269 1.7988 1.7967
4 3.3167 3.1896 3.1790
5 5.0201 4.9943 4.9575
6 8.6743 7.2358 7.1340
7 13.1628 9.9503 9.7114

Highest 2.5648 26.4666 116.1470 476.0578
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the tenth mode , often displaying an inconsistent number of changes in sign
(crossings) in the modal shape. As an example , the fi rst mode right- and left-
hand eigenvectors , for a .01 , normalized to a maximum amplitude of unity ,
are depicted in Figure 4. Note the rapid rise of the vectors within the
shock thickness at each end of the mesh. The fact that the two vectors are
nearly mi rror images of each other, for this uniform mesh of ten quadratic
elements , may be of importance in explaining the effects of varying mesh
size, as will be discussed later.

In order to examine the cause for deterioration of the accuracy of the
eigenspectrurn after about ten modes, the tenth mode right- and left-hand
eigenvectors are plotted in Figure 5. Note that , for this mode , the corner
and midside nodes for the quadratic element almost perfectly coincide with
relative maxima , relative minima , and null points for the modal shape.
Higher modes than this exceed the capacity of the quadratic element to fit a
second-order polynomial to known information concerning these critical points.
Higher-order elements would be expected to continue to track the eigenspec-
trum until their modeling capacity was exceeded . This provides us with a
method for estimating the number of retained modes in an analysis, however.
In one dimension , i-f the element length is 2Ax (Ax being the distance
between a corner node and a mids ide node), the n = L/2Ax .

It is not always feasibl e to use a uniform mesh for production analysis.

Therefore, a modest examination of one other modeling feature was undertaken.
The graded mesh seemed to exhibit the undesirable property of causing the
eigenspectruni to become indistinct , bunching the eigenvalues into pa i rs.
Under certain conditions , complex eigenvalue/eigenvector pairs were pro-
duced. Occasional ly, these complex pairs appeared early in the solution ,

disappearing as the solution approached the steady state. In all cases to
date, when the mesh was carefully prepared , these characteristics were not
observed. Although further study is needed , one can speculate that several
events are coalescing in order to produce this behavior : (1) a is smal l ,

indicating that advection is the important transport mechanism; (2) the
velocity is relatively uniform , leading to a skew-symmetric form for the
advection matrix; and (3) grading of the mesh can lead to difficulty in
calculating the “mirror image ” left- and right -hand eigenvectors.
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6. CONCLUSIONS

A spectral decomposition method based upon finite element modeling has

been compared to a Crank-Nicolson direct integration solution scheme and the
exact solution for the one-dimensional , nonlinear system defined by Burger ’s
equation. Results from this study are applicable to both fluid mechanics
and combined conduction-convection heat transfer. The parameter a, which

governs the importance of diffusive transport , was varied over a sufficiently

wide range such that comments on the comparisons are general .

The mode superposition method proved to be very attractive , in com-
parison to the second-order accurate Crank-Nicolson approach , generally
allowing art order of magnitude larger time step for equivalent convergence

to the exact solution. The modal shapes themselves tend to provide useful
information about the ability of a given mesh to produce accurate results ,

much in the same way that modal information is used in nonlin ear structural

dynamics. For this class of problems , in contrast to structural dynamics ,

system nonlinearities did not manifest themselves in dramatic changes in

the eigenspectrurn .
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APPENDIX A

FINITE EL MENT MODELS FOR BURGER ’S EQUATION

Consider now the transient form of the Burger ’s equation

~~~~~~~~~~~~~~~ . (A.l)

It is desired to perform a spatial discretization on the above equation
using the finite element method in conjunction with a Galerkin procedure.

Let the dependent variable be approximated by

u(x ,t) = ~~~1 (x) 
. u~ (t) (A . 2)

or

u(x,t) = ~
T(x) u (t) . (A.3)

Substituting (A.3) into (A.l) yields

+ 
~ 

___  
u = R , (A.4).

~ ~t 
— — — 

~x
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where R is the error or residual resulting from the approximation in (A.3).
The Galerkin procedure makes the residual zero in a weighted sense by
forcing R to be orthogonal to the space spanned by 

~~~. Thus,

I

Jc~RdV 
f

~~T 
~~~~ 

dV +f ~~~~~~~ - udV

~2~ T
+ ct~ 

-
~~~

-
~-- udV 0 (A.5)

Equation (A.5) may be rearranged by performing an integration by parts on the
last term, i.e.

~2~T ~ T

J - a! udV = J - c~ ~ — udA + J x~~~~ — u d V.
V A V

Therefore, (A.5) can be expressed as

[[!!
T
dvJ ~t 

+ [ J~!!~ ~
! dv] U

+ j~— dVj ~ = 

[ f i (a~
_ 
~) dA] (A.6)

,\
~~ 

Th _~
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In Equation (A.6) the right hand side represents the natural boundary condi-

tion (i.e. ~-~) for the differential equation.

The discrete approximation to (A.l) as given in (A.6) can be completed

once the basis or shape functions !(x) are specified . For the present case,
the basis functions to be considered are linear and quadratic in the spatial
coordinate. Using an i soparametric formulation let

Linear: ! ( S)  
= 

~~~~I~ } (A.7)

l/2(s2—s )
Quadratic : 4(s) = (l_s 2) (A.8)

l/2(s2+s)

where s is the normalized spatial variable. The x coordinate is related

to s through

x(s )  = l/2(l-s)x + l/2(l+s)x (A.9)

where x and x are the coordinates of the ends of the element.
1 2

To compute the previously defined integrals of the shape function
derivatives the following relations are required

~~ ~ ~x
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or

(x -x )
where J = Jacobian = 2 from (A .9) . Thus ,

- - 
(A.lo)

~x Ax~~s

Also , for this one-dimensional case ,

and

dV = ds . 1 . (A. l1 )

Linear Elements

Consider first the case of linear basis functions , i.e.

= ~l/2(l-s)~~S 1

29

~~~~~~~~~~~~~~~~~~~~~~~~~



- - -  - - - 

_
~ — -__~~~~~~ r - ~ -~~~~~-—- - 

~~~~~
-- ----

Then using the definitions in (A.IO) and (A.ll) and the integrals defined in
(A.6) allows the following computations

{fi~~T

d sj

~~~~~~~~~~~~~[2/3 ~~]~~~ ;

[f
~
Tu~~~~i~~~dsJ 

= 

~~~~~~~~~~~~~ ~

and

[J ~~ 
~~~~~~~~~~~~~~ 

ds] 

~
[_
~:;: 

-
~:;:i= . ( A . l 2 )

This results in a discrete equation for each el ement of the form

r~ 
1/3] N + 

2 

[ 

(~~~~ 
+ 

~~~~) 
~~~~~ + ~i)}~

u }U - (_
~~

. + 
~~~
.) (

~
- + -

~
-)j ~

[1/2 -1/2 1 u O~I = ; (A.l3)X [—1/2 1/2 j  u oj

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—__ 
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or, symbolically ,

M~~ + C ( u ) u + K u = F .  (A.14)

Quadratic Elements

A development similar to the one for linear elements may be carried out
for the quadratic basis functions

]/2(s2-s)

~~(s) = ( l _ 5 2 )

l/2(s2+s)

The element matrices are then given by:

F 1 1 F 4/15 2/15 -1/15]

F l_[!!
Tds 4~j= 

~~ 
2/15 16/15 2/15 =

I_ _ i  j  [-l/15 2/15 4/15]

{i
a~T 

~~~

. 
~~ dsj=

[(-lOu i -6u2+u3) (12u~+ 8u2)
(1/30) 

~ 
(-6ui-l5u2+2u3) (Bui-8u3) (-2u1 +l62-4-6u3)I= ~

(
~

) ;
[(ui+2u2 +2u3) (-8u2-l2u )) (-ul -f6u2 +lOu3)

j
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and

[ i~~ ~~~~~~y~~~ ds] 
2a
(i)[; 16~~8] 

K. (A.l5)

This results in a discrete equation for each element of the foll owing form

[4/15 2/15 —1/151 ~J 1 [(-lOul—6u2+u3) (12u 1+8u2)(_2u1_2u2_u))1
2/15 16/15 2/151 U2 + 

~~ I (_ 6u1_l6u2 +2u3)(8u1_8u3)(_2u 1+15u2+6u3)I
t—1/15 2/15 4/15] U3 ~(u1 +2u2+2u3)(-8u2—l2u ))(-ul+6u2+1Ou 3) j

~~ if ~ 
- 8 1

~~~~2 

~ 1-8 
16 -8 u2 = 0 ; (A.l 6)

L 1 -8 7 u3 0

or , symbolically,

M~~ + C (u) •u + K u = F .  (A.l7)
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APPENDIX B. SOLUTION STRATEGY

The governing system that defines the Crank-Nicolson method is the sum
of the matri x Equation (3.1), evaluated at two successive times , tn and ~~~~Thus ,

+ + 
~n)] 

u + 11 • 

~n+l

+ 

fr 
+C(u~~1 )j - 

~n+l 
= F + 

~n+1 • (B.fl

If a backward difference expression is used to eliminate 
~n+1 and a forward

difference expression to eliminate

U - u. ... -n+1 —n _ •— 
At ~n ‘ -

then the usual Crank~-Nicolson method is derived ,

2t4 . 

~n+l + ~~ [K + 
~n+i )J ~n+l 

At F

+ At F~~1 + 2M . - ~t + 
~n)}  . u~, . (B.3)
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It is recognized that the trapezoidal rule is characteristically equiva-
lent to the Crank-Nicolson method , although it leads to a slightly different

form for Equation (B.3). Then ,

~n+l = T ~!n+l ~ ~~ 
(8.4)

so that the governing equation becomes

+ C(u~~1) + ~~~M~
J 

• ~~~ 
= Fn+i + ~~- M  • + M - (8.5)

This form is somewhat more convenient in terms of storage for the forcing

terms , while suffering from the disadvantage that a hereditary derivative
appears as an initial condition .

Both methods are known to be unconditionally stable , with truncation

error of ord er (At) 3. Since storage was not considered a problem for these

one-dimensional examples , the conventional Crank-Nicolson method was adopted.

The only remaining question is the treatment of the nonlinear term
For simplicity, this study has also adopted quasi-l inearization :

~
- C (u ~ ). (8.6)

It is recognized that this approach might introduce significant errors if

the yionljnearities are substantial . In such a case , a Newton-Raphson or
modified Newton-Raphson might be required at each time step.
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APPENDIX C. EIGEMVA IJJE/ EIGENVECTOR ESTIMATES

In order to arrive at estimates of the eigenvalues and elgenvectors of
the nonlinear system (2.1), consider the linearized version

3 u 3 2u
~~~~

+ 
~~~~~~~~ C.

with u prescribed on the boundaries x=O and x=l , as wel l as at the initia l
time t0. Looking for solutions of the form eAt~(x), we are led to the
eigenvalue problem

- 2C4 ’ = x~, q(0) = q ( 1 )  = 0. (C.2)

In the pure diffusion case, C 0 , and the eigenvalues and eigenvectors are
given by

X n2
~

2 ; 4~(x) = sin(nirx ) - (C.3)

As C increases, corresponding to a decrease in a=1/2C, the skew-sym-
metric advection term becomes important and the modes change form. The
elgenvalues remain real , given by

= -n2i~ -C2 , (C.4)
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while the eigenfunctions are given by

4~ (x) = e X sin(nhrx ) . (C.5)

The plus and minus signs are indicative of the redefinition of orthogonality
required for the advection-diffusion system, with the left-hand and right-
hand eigenvectors corresponding to functions concentrated at opposite bound-
aries.

For our problem , it is convenient to write Equation (C.4) in the form

+ n
2 ir2) , (C.6)

where a is the diffusion parameter and L is the length that is divided into
elements. It should be noted that , initia lly, the velocity is virtually con-
stant (for our problem, u0(x)= 2 for x>O and u0(O) = 0). As the analysis pro-
ceeds , however , the velocity within the shock thickness varies.
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